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T H E  ALGEBRAIC STRUCTURE OF THE N-BODY PROBLEM 

Bv L. M. Rauch 

ABSTRACT 

The basic concern in this paper is to unfold the algebraic 
structure of the n-body problem. It is found that the union 
of initiallv disparate sub-proups leads to a group whose 
properties are the formal tools that formulate the explicit 
solutions of the n-bodv problem. A brief indication of the 
applications of this evolved algebra is given in the las 
section of the paper. 
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THE ALGEBRAIC STRUCTURE OF THE N-BODY PROBLEM 

INTRODUCTION 

The two known general processes in the solution 
of the N-body problem, namely, the serial method of Steff- 
ensen [11, [21, C31 and the iterative process of Rauch C41, 
[SI are implicit formulations. Thev lead onlv to numerical 

necessary so that (among other thinps) the interpretations 
of the dvnamical states, from the analytical phases, mav 
be given directly other than throuph numerization. 

In the attempt to obtain such solutions it was 
observed that more basic formal considerations were nec- 
essary to gain the desired end. These initial observations 
generated the present paper on the algebraic structure of 
the N-body problem. 

The paper is divided into two Darts. The first 
part deals with two collections of initially disparate 
elements and the union of these two sets. The elements of 
the first set are concrete, generated from an initial element 
which essentially specifies the canonical form of the equa- 
tions of motion of the N bodies. The elements of the second 
aggregate are, at first, abstract but are piven a rudimentarv 
character throuph what appears to be an arbitrary definition. 
It is then found that the union set endows certain properties 
(embodied in theorems) on the initially abstract second sub- 
set which then allows us to deduce the group proDerties of 
the union ensemble. 

I 
, evaluations, To remedy this defect explicit solutions are 
I 

I 

These group properties, as well as more concrete 
formulations, are deduced in the second Dart of the paper. 
These concrete aspects are precisely the tools that formulate 
the explicit solutions (with their concomitant properties 
such as regions of convergence, singularities, etc.) of the 
problem. 

formal aspects of the N-body problem, however, the last sec- 
tion of the second part gives a brief indication of the app- 

The paper is, of course, concerned only with the 

I lications of the evolved algebra. 
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I I. THE ALGEBRAIC STRUCTURE 

The symbolic form of the equations of motion. The 
position vector xi of the ith point mass Mi is piven by 
its components xih relative to an inertial Cartesian 
rectangular comrdinate frame. It is specified that the 
indices i, j ,  h, range over the positive integers in the 
form , 

I 

I 

where the scalar R i ’ ,  the square of the magnitude of the 
position vector between the i and 3 particles, is piven by 

.. 
If the vector X I J  is defined as 

then its components are expressed by the symbol 

xij(h) = xih - x jh 

(1.1) 

(1.3) 
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and so 

With the further definition of the scalar 

the equations of motion take the form 

Since the type of operations that fo l low leave 
the indices unaltered, we delete these and reintroduce 
them at appropriate points. The given system of differ- 
ential equations thus formally become 

where the summation on the j is understood. The above 
symbolic form (1.9) may be further modified bv the def- 
initions 

.. 
x2 = HSoX, ; x 2  5 x,Xo 5 X,So E S 

Define 

yo i soxo, 

so that finally the equations of motions in the form (1.2) 
have been transformed into the canonical symbolic form 

x = H  
YO 

2 

(1.10) 

(1.11) 

(1.12) 
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The set of derivatives with positive subscripts. 
The union R of the two sets R1 and R2 
(yo,yI,y2,---) and (---,~,~,y-~,y,~) respectively, will be 
shown to be a group under a well defined multiDlicative op- 
eration. Some significant properties of this group will be 
formulated, amonp; which will be the central fact that any 
element of the set, R = R UR2= ~---,y-2,y,1,vO,v1,y2,---., 
in the order indicated, will be the derivative (relative to 
time) of an immediate predecessor and the integral of an 
immediate successor. 

of elements 

In this section we deal only with the set R1 of 
elements with positive subscripts or zero. 

The elements (yo,vl,y2,---) E R 1  as thev stand 
now are wholly abstract (undefined) except for yo (specified 
by (1.11)). We proceed to express the elements (ylrv2,y3,---) 
with positive subscripts by means of tgibnitz's rule, apDlied 
to yo, for the determination of the r derivative of the 
product of two functions So(t) and xo(t). 
definition (1.11). Thus 

Awlv the rule to 

J - 7 -  - dt' p=o p=o- 

r! represents the 6) = p!(r - p ) !  
where the well known symbol 

coefficients of a binomial expansion and where 

The elements yr E R1 , with positive integral subscripts or 
zero, may be viewed as now defined by means of (2.1) and (2.2). 
We will call these elements, for brevity, positive ones. 

plication for any two elements yF,vm~R1, is formulated by 
The property of closure on R1, with a rule of multi- 

-3- 



E R  is an r”m 1 Theorem 1 - The product of anv two elements y 
element of R1 given by 

; r,m = 0,1,2, - - -  
Y Y  r. m = ’my, - ’r * m 

where the following conditions on the S’s and X’s hold: 

The proof is as follows. In view of Eq. ( 2 . 1 )  

By the well known addition rule for binomial coefficients 
C91, [ I O ] ,  namely 

it follows that 

(2.3) 

( 2 . 4 )  

For the interval s + 1 < q 
If use is made of the combinatorial fact that 

m, we have s - a 2 -1. - -  

@) = 0, for any integer r < o or r > x and any x 

then 

m 

( 2 . 7 )  

= 0, since s - a 5 - 1, namely, s - q < 0 
q = s  
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Thus 

m S 

q=o q=o q=o 

Formula ( 2 . 6 )  thus becomes 

I 

Use the substitution p = s - q with the corres- 
ponding ranee for p; namely when s = o and Q = 0 ,  then 
p ; 0. Likewise when s = r + m and q = m, then D = r. ~ 

I This leads to the expression 

If it is specified that the rules for the multiplication 
of the S ' s  and the X's are to be the conditions given bv 
(2.4) then 

r 
X 

p= 0 q=o Yr+m 

by definition (2.1). 

, 
I 

The commutative rule is readilv shown so that the 
theorem has been validated. 

In particular for, say, r = o 

( 2 . 8 )  
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We mav thus formulate the 

Corollary - The element yo E R1 is a multiplicative identity 
element of the set R l .  

It is of some interest to note that the set of 
elements generated by the binomial formula for non-negative 
integral powers, 

... 
( 2 . 9 )  

are isomorphic to the set R1 of positive elements generated 
by the Leibnitz foraula ( 2 . 1 ) .  For, briefly, if the Dowers 
are transformed to subscripts and if the S and X are defined 
as S z S 
turns into (2 .11,  namely 

and X E X and further, if vo 2 ( S  + XIo, then ( 2 . 9 )  
0' 0 

( 2 . 1 0 )  

and where, for r = 0 

yo ( S  + XIo = soxo. ( 2 . 1 1 )  

Mixed set of elements - belonaing to R and R 2 .  The -1 - 
character of the elements E R 2 ,  namely, those elements with 
negative subscripts (negative elements) differ in the con- 
crete basically from the positive ones ( E R ~ )  in their gen- 
eration and mode of representation. They have no process 
of generation from an initial element vo unless we define 
arbitrarily an ad hoc principle of generation and secondly, 
as will be noted, their mode of representation is no longer 
in finite terms of the S ' s  and XIS. 

Let us consider initially and briefly a heuristic 
point of view from which we can draw a provisional definition 
(through analogy) of any negative element. Thus consider the 
binomial expansion for neRative integral powers, 
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S-m-r r 
X ; m = 0,1,2,--- (3.1) 

I where the gamma functions are used in the last member in 1 the equalities. 

We now start ab initio and express any element 
y-, Q R2 in terms of the S’s and X’s, by means of an ana- 
logous formula, 

S-m-rXr, m = 0,1,2,--- 
I 

(3.2) 

(The case m = 0 is included to give the formula a trifle 
larger scope, though the value yo derived from (3.2) be- 
longs, by definition, to the set R1). 
for Y-m is wholly abstract. No meaning can be attached 
to the element since no definition is explicit in 
(3.21,namely the unknown y,, is given in terms of a set of 
unknowns { S-m-r; 0 5 r < ->  . If the set of scalars ‘(S-m-p} 
could be determined the N-body problem would likewise be 
resolved. 

The statement (3.2) 

We will now attempt to give some character to the 
elements y-, (other than that found in the almost empty 
definition (3.2). In the previous section any two positive 
elements were combined (by a defined multiplicative operation) 
to form an element of R1 . We consider now the second pos- 
sible case in which yn~R1,y-,~R2 such that y-, yneR where 
R = R1UR2. 

Theorem 2 - If y-,€R2 and Y,E R1 then 

We formulate closure on the set R by 



with the conditions that 

The expansion of y,m+n is, with (3.2) in view, 
given as 

m,n = 0,1,2,--- 

It is to be observed that if m - n < 0 or m < n ( s o  that 
ER), then expression (3.5) turns into a finite form Y- (m-n 1 J 

of the type (2.1). We are thus concerned with the more in- 
volved case where m - n > 0 or m > n, namely with the sit- 
uation where y-(,-,)~R2. 

The left member of (3.3) is given, by means of 
(3.2) and (2.11, in the form 

The factor e) Sn-s Xs is transformed to an infinite 
s=o 

(3.3) 

(3.4) 
I 

I 
1 

(3.5) 

sum by the following device. With the combinatorial formula 
( 2 . 7 )  in mind, 

OD 

@ ) s  x = o .  
SJ+1 n-s s 

so that 
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It follows that 

Cauchy's formula for the product of two sums, namely 

r 

is utilized. It follows that 

o r  

r=o t=o I Y-mYn = (-l)r-t (m+;=$-')(n) t '-m-r+t x s x  r-t n-t +t* 

If multiplication is defined fo r  the S ' s  and X's bv the 
conditions that (3.6) SaSB = S a  B v  Xy>i, = XY+& for all inteeers 
a , B , Y , G  

then 

If a comparison is made between ( 3 . 7 )  and (3.51, 
it is observed that the two left members will be identical 
provided the condition 

t=o 

(3.6) 

(3.7) 

for any r, is satisfied. This must be shown. 
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The w e l l  known c o m b i n a t o r i a l  form 

is  u t i l i z e d  i n  what follows. L e t  T = r - t .  So t h a t  
when t = 0 t h e n  T = r and when t = r, T = 0 .  These 
s u b s t i t u t i o n s  are used i n  t h e  l e f t  member of ( 3 . 8 ) .  
Thus 

t=o 

Use ( 3 . 9 )  from r i g h t  t o  l e f t ,  t o  g e t  

t = o  T=o 

If t h e  a d d i t i o n  formbla (2.5) is used  on t h e  
above r i g h t  member, 

t = o  

L e t  (-min) = ( +-n r 1 ) and a g a i n  u s e  (3.91, t h e n  

and from which w e  g e t  

But t h i s  i s  p r e c i s e l y  c o n d i t i o n  ( 3 . 8 ) .  R e l a t i o n s  ( 3 . 3 )  are 
t h u s  s e e n  t o  be  v a l i d  under  c o n d i t i o n s  ( 3 . 4 ) .  

-10- 
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Elements  be long ing  o n l y  t o  R2  

I n  t h e  l as t  t w o  s e c t i o n s  we dea l t  w i t h  t h e  
m u l t i p l i c a t i v e  r u l e  fo r  any t w o  e lements  such  t h a t  
Ym ''1, YnER1 and y-,eR2, yncR1, r e s p e c t i v e l y .  

However t h e r e  e x i s t s  no a p r i o ~ r e a s o n  t h a t  t h e  t h i r d  
p o s s i b i l i t y  must be f u l f i l l e d ,  namely t h a t  i f  y-,cR2, 

y-,cR2 t h e n  y-,y-,~R~. 
t h e  c l o s u r e  p r o p e r t y  on R 2  f o r  n e g a t i v e  e lements .  

We now formula te ,  i n  a theorem 

Theorem 3 - If Y - ~ ,  Y - ~ E R ~ ,  then  

w i t h  t h e  c o n d i t i o n s  

t h a t  

E R i s  s p e c i f i e d ,  by means 2 
The e l emen t  y 

-m-n 
of ( 3 . 2 )  as  

The p r o d u c t  of t h e  t w o  e l e m e n t s  t a k e  t h e  f o r m  

-11- 



Use the Cauchy multiplicative formula, 

in view of the assumedconditions that 

; a , e , y , b  = 0,1,2,---. 
-a - B  -a-  B 9 x,yx,, = x -y- 6 s s = s  

then f o r  every r in the interval - If Y-m-n - Y,mY-n' 
(O,-), we have 

r 1 (m+r-t-l)(n+t-l) (m+n+r-l) 
r-t t r . 

t=o 

(4.4) 

(4 .5 )  

To show the validity of (4.51, use the addition formula (2.5). 
Then 

( m+r-t-1) r-t (n+;-l) = (m+n+r-l-l r ) 
t=o 

So that 

-12- 



Let T = r - t , then 

and 

T=o 

In view of ( 2 . 5 1 ,  

Again use (3.9) to give the value 

- (m+ntr-l) Q -  r 

or 

r c r-t 
(m+r-t-l) (ntt-1) = (rn+ntr-l) r 

t=o 

But the validity of this (expression (4.5)) was necessary 
to prove the theorem. 

Generalization of the multiplicative formulae. The 
E R ;  

m' 'n 1 
three theorems of closure for the elements y 

E R  1' Yn E R 2 i  Y,, Yn E R2 under multiplication may be 
'm 
incorporated into a single theorem. Before doing this we 
will show that a single formula can express any element 
ym E R. This fact is given by 

-13- 



Theorem 4 - Any element ym" R is given by the expansion 

Consider any negative integer or zero, 

m = - t, t = 0, 1, 2, ---. 
Expression ( 5 . 1 )  then becomes 

-1 {ttr-1) On the basis of (3.9) we can write that (-:) = ( ) ( r 9 

so that (5.2) becomes 

But that is the form (3.2) for any element E 

Now let m be a positive integer or 
m = n, n = 0, 1, 2, ---. Then (5.1) becomes 

Now 
a S a 

But by the combinatorial formula (2.71, (:)= 

R s  
2 

zero, namely 

e) Ss-rxr . 
0 for r > s. 

that ($)S X = 0 and ( 5 . 4 )  changes to s-r r r=s+1 

S 

Y, = 1 (;) s x s = 0,1,2,--- 9 s-r r' r=o 



which is t h e  form (2.1). Thus Theorem 4 i s  v a l i d .  

We now c o n s i d e r  t h e  g e n e r a l  c l o s u r e  p r i n c i p l e  
g iven  by 

Theorem 5 - I f  ym, yn e R ,  t h e n  

’m’n 

w i t h  t h e  c o n d i t i o n s  

- x x  = x  
’a’8 - sca+8’ y 6 Y + 6  

f o r  any  i n t e g e r ,  m,n. ( 5 . 6 ’ )  

The proof  i s  r e a d i l y  ach ie  ed w i t h  t h e  u s e  of 
The e l emen t  ym+n i s  g i v e n  by e x p r e s s i o n  ( S a l ) .  

m+n 
’m+n = F ‘ r ’ sm+n-r  Xr f o r  any i n t e g e r  m,n. 

r=o  

Use ( 2 . 5 )  t o  g e t  

’m+n = ; W:J S,+n-r Xr f o r  any  
r = o  

Develop y y i n  t h e  form 
m n  

(5.7) 

Cauchy’s m u l t i p l i c a t i o n  formula  l e a d s  t o  

r = o  t = o  

-15- 



I f  t h e  c o n d i t i o n s  ( 5 . 7 )  are  s a t i s f i e d ,  

But ( 5 . 9 )  is p r e c i s e l y  ( 5 . 7 ) .  The theorem is t h u s  proved. 

The c o e f f i c i e n t s  (F) of (5 .1 )  may be p u t  i n  d i f -  
f e r e n t  f u n c t i o n a l  forms. Two o t h e r  forms are c o n s i d e r e d  
here. I n  t e r m s  of gamma f u n c t i o n s  

Though t h e  gamma f u n c t i o n s  are undef ined  f o r  n e g a t i v e  i n -  
t e g r a l  arguments o r  z e r o  y e t  t h e  t o t a l  e x p r e s s i o n  is de- 
f i n e d .  We t h u s  have a second form f o r  (5.11, namely 

v a l u e  o r  zero .  1 

From the  form (5.10) a n o t h e r  e x p r e s s i o n  may be 
formula ted  i n  t e r m s  of t h e  hypergeometr ic  f u n c t i o n s  c11.1. 
Cons ider  t h e  w e l l  known r e l a t i o n  between t h e  gamma and 
hypergeometr ic  f u n c t i o n s ,  namely 

where c - a * b > 0 and where t h e  q u a n t i t i e s  are assumed 
real .  

S p e c i f y  t h e  i d e n t i t y  

where r ( x )  is i n t r o d u c e d  w i t h  t h e  unknown argument and t o  
be determined w i t h  t h e  q u a n t i t i e s  a , b , c  by t h e  f o u r  l i n e a r  
e q u a t i o n s  d e r i v e d  from t h e  i d e n t i t y ,  namely 

-16- 
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~ 

c = m + l ,  c-a-b = x,  c-a = r+l,  c-b = m - r + l .  

I The above e q u a t i o n s  l e a d  t o  t h e  v a l u e s  

a = m - r ,  b = r, c = m+l, x = 1 ~ 

I It f u r t h e r  f o l l o w s  t h a t ,  s i n c e  c-a-b = x = 1 > 0 ,  t h e  
c o n d i t i o n  imposed on t h e  r e l a t i o n  ( 5 . 1 1 )  is  s a t i s f i e d .  
So t h a t ,  s i n c e  r(x) = r ( l )  = 1 

Thus a t h i r d  form f o r  t h e  e x p r e s s i o n  of t h e  g e n e r a l  
formula (5.1) i s  g iven  as 

=I F ( m - r , r ; m + l ; l ) s  x ( m  any i n t e g e r )  
r = o  m - r  r 'm 

For t h e  purpose  o f  r e f e r e n c e  and t o  o b s e r v e  t h e  
c o n c r e t e  f o r m  which i s  t h e  b a s e  of t h e  g e n e r a l  fo rmulae  
(5 .11 ,  (5 .10)  o r  (5 .12)  t h e  i n d i c e s  are  r e - i n s e r t e d .  I f  
w e  b e a r  t h e  e q u a t i o n s  of motion ( 1 . 1 2 )  i n  mind, t h e n  

'm+ 2 = H Ym 

o r  

Use formulae  (5.11, ( 5 . 1 0 1 ,  (5 .12) .  So t h a t  

OD .. . .  
S i j  X i j (h )  = 1 1 H.F(m-r,r;m+l;l)S13 X13(h). m - r  r 3 m - r  r j r = o  

(5.12) 

(5.13) 

(5.13') 

( 5 . 1 4 )  



11. THE B A S I C  PROPERTIES OF THE SET R AS A GROUP 

The p r e v i o u s  p a r t  of t h e  p a p e r ,  w a s  concerned  
mainly w i t h  t h e  f o r m u l a t i o n  of  t h e  p r o p e r t i e s  of t h e  se t  
R = R1UR2 from a w e l l  d e f i n e d  g e n e r a t i n g  e lement  yo E R1, 
d e r i v e d  from t h e  c a n o n i c a l  form of the e q u a t i o n s  of motion 

E R 2 ,  u n l i k e  t h e  e l emen t s  ( y  ,y ,y3,---) E. R1, were i n i t -  

i t i a l l y  undef ined  y e t  (by what a t  f irst  appeared  t o  be an  
a r b i t p a r y  o r  a t  b e s t  a h e u r i s t i c  d e f i n i t i o n  (3.211, t h e s e  
n e g a t i v e  e lements  were i n c o r p o r a t e d  i n t o  t h e  c o l l e c t i o n  R. 
The p r i n c i p l e  of c losure t h u s  gave p r o p e r t i e s  t o  t h e  s e t  
of e lements  R 2 ,  t h o s e  p r o p e r t i e s  t h a t  be long  t o  t h e  t o t a l  
aggrega te  R.  

un fo ld  some of  t h e  p r o p e r t i e s  of R and ( 2 )  t o  i n d i c a t e ,  
v e r y  b road ly  and b r i e f l y ,  a f e w  p r o c e s s e s  ( i n v o l v i n g  t h e  
p r o p e r t i e s  of R )  by means of which t h e  N-body problem may 
be r e so lved  e x p l i c i t l y .  

of t h e  N bod ie s .  Though t h e  e l e m e n t s  ( - - - , Y , ~  , ~ , ~ , y , ~  1 

1 2  

Our o b j e c t  i n  p a r t  I1 of t h e  pape r  i s  (1) t o  

The s e t  R = R UR as a group 1-2 - The f i r s t  p r o p e r t y  

t h a t  we e s t a b l i s h  f o r  t h e  s e t  R is t h a t  it is  a group 
under  t h e  d e f i n e d  m u l t i p l i c a t i v e  o p e r a t i o n .  T h i s  p r o p e r t y  
was not  e x p l i c i t l y  g iven  i n  t h e  p r e v i o u s  d i s c u s s i o n .  Here 
w e  emphasize those facts  which de te rmine  t h a t  a c o l l e c t i o n  
of e lements  c o n s t i t u t e s  a group C 1 2 3 .  

Theorem 6 - The set R = R1UR2 is an Abel ian  group of i n f i n -  
i t e  o r d e r ,  where 

Ym R1, m = 0 ,1 ,2 , - - -  9 Y-n E R 2 ,  n = 1,2,3,--- ( 6 . 1 )  

'r+s = YrYs, YrYs E R ; r,s = 0 ,  - + 1, 2 2,---, 

w i t h  t h e  m u l t i p l i c a t i v e  c o n d i t i o n s  



(the scalar quantities S and X belong to the field of real 
o r  complex numbers) 

(1) The element yo is the identity element of 
for the set of all in- - 

- Ym 
If the general form (5.1) is used, then 

the set R ,  namely yoym = y,yo 
tegers {m} . 

integer m 

Use the multiplicative conditions (41, so that 

The same result is obtained fo r  yoyo. 

( 2 )  For  every subscript m of ym there exists an 
integer -m of Y-m such that 

To prove the existence of an inverse element y E R 
corresponding to any element ym E 

-m 
R, the closure theorem 2 

on mixed indices is used, namely, if y E R 1 '  Y_, R p  m 

- 
-mYm The same theorem leads to the fact that y 

( 3 )  The associative rule f o r  any three elements 
is valid, namely 

This statement is immediately seen to be true by the general 
closure principle f o r  multiplication. Thus 
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( 4 )  The set R is commutative. This is readily 
If ym, yn E R, then by the general closure form- observed. 

ula (5.61, y y - ,for all integers m, n. m n  - 'm+n 
However, in view of (5.11, 

( 5 )  The number of elements in R is a discrete 
infinity. This is manifest since the number in the set of 
all integers is a countable infinity. 

The validity of these five properties of the 
set R establishes the validity of the theorem. If might 
be observed that since the set R, under the defined multi- 
plicative operation, is isomorphic to the set of all in- 
tegers under addition, the proof of the theorem could be 
more elegently established by noting this isomorphism. 

The basic non=algebraic property of the group R - 
The essential meaning of the development of the algebraic 
structure of the set R = R UR relative to the solution 1 2  
of the N-body problem, lies in the implications of the 
non-algebraic property of the group R as given by 

Theorem 7 - If the elements in the group R are ordered in 
a sequence of increasing subscripts, then any element of 
the set is the derivative (relative to time) of it's immed- 
iate predecessor and is the integral (but for an additive 
constant) of its immediate successor. 

For positive subscripts the theorem is immed- 
iately established by virtue of the rule of Leibnitz for 
the * d u c t  of any two elements of R1 . The rule is an 
inductive oge such that, given the initial element yo E R1 
any positive element in the sequence is defined by an appro- 
priate number of differentiations of an intially given 
element of the positive sequence. 
for the immediate precedessor of a specified element. If 
further the ordinary notion of integration is adhered to 
(as an operation inverse to differentiation), then any given 
element is the integral (but for an arbitrary constant) of 
an immediate successor in the ordered positive set ( R  1. 

This is specifically so 

1 
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However t h i s  i n d u c t i v e  r u l e  no l o n g e r  n e c e s s a r i l y  a p p l i e s  
f o r  t h e  t o t a l  sequence  R s i n c e  t h e  r u l e  i t s e l f  i s  e s t a b -  
l i s h e d  from t h e  p r o p e r t i e s  of t h e  p o s i t i v e  e l e m e n t s  
(y l ,  y 2 ,  y3 ,  ---I and t h e  assumpt ion  t h a t  y1 i s  t o  f o l l o w  yo. 

A more c o n c r e t e  f o r m u l a t i o n  i s  g i v e n  i n  t h e  p roof  
o f  t h e  theorem fo r  t h e  p o s i t i v e  sequence,  R1 , by d i s r e -  
g a r d i n g  t h e  L e i b n i t z  i n d u c t i v e  formula and making fo rmulae  
( 2 . 1 )  and (2.4) as a b  i n i t i o  d e f i n i t i o n s .  Then s i n c e  

( 7 . 1 )  

x + x  
d t  p=o  r - p + l  p 

By t h e  use  of (2.41, 

However s i n c e  y = S X + S X and y i s  g i v e n  by ( 7 . 1 1 ,  it 

f o l l o w s  t h a t  
1 l o  0 1  r 

- 
(because  of (2.3)) 

- =  d y r  
d t  Y l Y I ?  - 'r+l 

F u r t h e r ,  by t h e  d e f i n i t i o n  of i n d e f i n i t e  i n t e g r a t i o n ,  namely 
t h a t  

Yr - - I Y r + p  + c (c ,  f o r  t h e  t i m e  b e i n g ,  i s  
assumed z e r o ) ,  t h e  theorem f o r  t h e  o r d e r e d  set  R1 i s  e s t a b -  
l i s h e d .  (The e l emen t  y i s  assumed g iven ,  fo rmula  ( 1 . 1 2 ) ) .  

0 

-21- 



The case f o r  t h e  sequence  of e l emen t s  be- 
longing  t o  R2 i s  i n i t i a l l y  c a t e g o r i c a l l y  d i f f e r e n t .  
The element y,, E 

meaning s i n c e  it i s  n o t  g e n e r a t e d  from yo i n d u c t i v e l y  
b u t  i s  a b s t r a c t l y  d e f i n e d  i n  terms of unde f ined  symbols 
through t h e  formula ( 3 . 2 ) .  We now show t h a t  t h e  sequence  
of  e lements  o f  R2 have t h e  same b a s i c  p r o p e r t y  (as g iven  
by t h e  theorem) as t h e  o r d e r e d  e l emen t s  o f  R 

R2, m > 0 h a s  i n i t i a l l y  no c o n c r e t e  

1' 

The d e r i v a t i v e  of 

i s  given by 

r = o  d t  

With t h e  u s e  of (3.4) 

X 
- m - r  r S 

a - s x  + s x  - ( 0 1  

Since  y = S X + S X and y is g i v e n  by ( 7 . 2 1 ,  it 
fo l lows  t h a t  

1 0 1  l o  -m 

dy- m - =  
'-,+I Y Y  = d t  1 -m 



With t h e  added note  on t h e  d e f i n i t i o n  of  
t h e  i n d e f i n i t e  i n t e g r a l  (with c = 01, t h e  theorem 
i s  shown t o  be a l s o  v a l i d  f o r  t h e  set  of  ordered 
elements of R2. We make one manifest  observa t ion  
on t h e  a p p l i c a t i o n  t o  t h e  N-body problem, namely, 
i f  t h e  unknown q u a n t i t i e s  S , q = 1,2,3,---  can 
be determined, then  t h e  N-body problem i s  resolved. 
We w i l l  g ive  a b r i e f  e l abora t ion  on t h i s  po in t  i n  
t h e  f i n a l  s e c t i o n  of  t h e  paper. 

-q 

A d i v i s i o n  algorithm. The ex is tence  of  an 
inve r se  element y-, E: R f o r  any ym E: R namely 

’ 2 - m  = Y-,Y, - - Yo l eads  t o  t h e  quest ion as t o  t h e  
meaning of a d i v i s i o n  symbolism, - YO . The answer 

Ym 
i s  given by t h e  

Theorem 8 - The d i v i s i o n  symbol ,&. means y 

t h e  process  o f  d i v i s i o n  i s  c a r r i e d  through such t h a t  
t h e  m u l t i p l i c a t i v e  condi t ions  

i f  -m 
Ym 

s s  
a S  

are f u l f i l l e d .  

Consider f i r s t  an example t o  i l l u s t r a t e  a 
concre te  s i t u a t i o n  i n  t h e  d iv i s ion  a lgor i thm i n  which 
t h e  cond i t ions  (8.11 are involved. I t  i s  proposed t o  

f i n d  t h e  value o f  - f o r  m = 2 .  
Ym 

Thus 

yo - i 

s2xo+2s x +s x y2 1 1  0 2  
- -  
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Now c a r r y  through t h e  i n d i c a t e d  p r o c e s s  w i t h  (8.1) i n  mind, 

s x -2s x +3s x - --- 
s x 
-2 0 -3 1 -4 2 

s*xo+2s x +s x 1 1  0 2  0 0  
' s  x +2s x ts x 
0 0  - 1 1 - 2 2  
-2s x -s x 

-11 -2 2 

3S-2X2 +6S-3X3+3S-4X4 
- - - - - - - - - - -  

If t h e  p r o c e s s  i s  c o n t i n u e d ,  w e  f i n d  t h a t  

But i n  view of (3.2) 0 (r:l)S X = y h o l d s .  -2-r r -2 
* d  

Hence 

I n  g e n e r a l  a f t e r  t h e  d i v i s i o n  i s  performed 
Y 

under  (8.1) f o r  the given quantities, 2 h a s  t h e  

e x p r e s s  i o n  
Ym 

(8.2) 

T h i s  e x p r e s s i o n  i n  t h e  form o f  a theorem may be estab- 
l i s h e d  by t h e  i n d u c t i v e  p r o c e s s .  However, a somewhat 
s i m p l e r  proof  i s  g iven  by t h e  f o l l o w i n g  c o n s i d e r a t i o n .  



S t a r t  w i t h  t h e  g i v e n  f a c t  t h a t  a n  i n v e r s e  e x i s t s  for 
each  e lement  y m e  R ,  namely, 

Now s y m b o l i c a l l y  d i v i d e  bo th  members of t h e  e q u a t i o n  
by ym so t h a t  

YO y-m = - Ym 

'm 
- 

m Y 

Perform t h e  d i v i s i o n  a l g o r i t h m  on - 'm w i t h  (8.1) 

i n  view. T h i s  l e a d s  t o  t h e  q u a n t i t y  
Ym 
k - - soxo - - Yo. 
Ym 

'0 = yay-,. So t h a t  - But s i n c e  y y,, = y-,, w e  have  0 

t h a t  y = 5 and t h u s  e s t a b l i s h i n g  t h e  theorem. 
-m 

Ym 
We h e r e  make t h e  m a n i f e s t  o b s e r v a t i o n  t h a t  t h e  

theorem h a s  formal v a l i d i t y  o n l y  s i n c e  t h e  d i v i s i o n  ex- 
pans ion  i s  e x p r e s s e d  terms o f  t h e  s t i l l  unknown e n t i t i e s ,  
t h e  n e g a t i v e  S ' s  ( S  , q = 1,2,3,---). 

-9 
N o t  u n t i l  S i s  e v a l u a t e d  can  w e  a s c r i b e  any 

-4 
o t h e r  b u t  a formal meaning t o  y-m = However, 

t h i s  p a p e r  can  demand no more than  t h e  formal o r  s t r u c -  
t u r a l  p h a s e s  i n  i t s  theorems r e l a t i v e  t o  N-body problem. 
A work i n  p r o g r e s s  a t  p r e s e n t  on t h e  e x p l i c i t  s o l u t i o n  
of t h e  N-body problem u t i l i z e s  t h e  above theorem i n  a 
s i g n i f i c a n t  a n a l y t i c a l  mode. 

Ym 

The d i v i s i o n  theorem may be g e n e r a l i z e d  by 
p o s i n g  a q u e s t i o n  whose answer i s  t h e  g e n e r a l i z a t i o n .  
Given a l i n e a r  e q u a t i o n  ymyr = ys,  what i s  t h e  s o l u t i o n ,  
ym, when y, and y g i v e n ?  The s o l u t i o n  i s  embodied 
i n  t h e  
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C o r o l l a r y  - If yr,  ys E. R ( r , s  any t w o  i n t e g e r s )  and 
E : R  Y m Y r  = Y s  m 's-r t h e n  y = 

Divide  bo th  s i d e s  of t h e  e q u a t i o n  f o r m a l l y  
by Y r *  

Y 
Thus - Y r  ym = Y S  - The f ac to r  2 of t h e  l e f t  member 

Y r  Y r  Y r  

Y r  

Y r  
becomes, t h rough  t h e  d i v i s i o n  a l g o r i t h m ,  - = s 0 0  X s  Y 0 

Y r  - 
Y r  

(1.11). So t h a t  - ym - yoym = ymO The r i g h t  member 

yoys yo 5 
Y r  Y r  Y r  Y r  

yS - 
- y s .  may b e p u t  in t h e  form - = - - 

- Y - r Y S .  
YS  

Y r  
by t h e  d i v i s i o n  theorem and so - - Y- r But 5 = 

Y r  

However, because  of  ( 3 . 3 1 ,  y,, ys - - yswr. 

a l te red  e x p r e s s i o n s  f o r  t h e  l e f t  and r i g h t  members of 

J o i n  the  

i s  shown t o  be v a l i d  w i t h  t h e  o b s e r v a t i o n  t h a t  y s-r E: R.  

Blsief o u t l i n e  of t h e  a p p l i c a t i o n  of t h e  a l g e b r a i c  s t r u c -  
t u r e  t o  t h e  a n a l y t i c a l  s o l u t i o n  of t h e  N-body problem 

C13.1, C8.1. 

The a l g e b r a i c  p r o c e s s e s  t h u s  f a r  deve loped  
s u g g e s t s  a number of modes of u t i l i z i n g  t h e  formal s t r u c -  
t u r e  i n  t h e  e x p l i c i t  s o l u t i o n  of t h e  N-body problem. 
t h e  e x p l i c i t  s o l u t i o n  i m p l i e s  a n a l y t i c a l  c o n s i d e r a t i o n s ,  
w e  must forego d e t a i l e d  developments  i n  t h i s  p a p e r  and 
deal b r h f l y  w i t h  the  d i r e c t i o n  i n  which t h e  f o r m a l i s m  
p o i n t s .  

S i n c e  



L e t  u s  u t i l i z e  a modif ied form o f  t h e  b a s i c  
I Theorem 7 on t h e  non-a lgebra i c  o p e r a t i o n s  on t h e  Group 

R. 
K. 
d e g r e e  m - 1, namely .l C i t  
q u a n t i t y ) .  

I T h i s  m o d i f i c a t i o n  creates a new se t  of e l e m e n t s ,  
Thus c o n s i d e r  an  a r b i t r a r y  polynomial  i n  t o f  g iven  

i 
I 

m- 1 
( C i ,  a n  a r b i t r a r y  r e a l  

=0 - 
The new element,  y,, E R i s  g i v e n  by t h e  

i 
I t r a n s f o r m a t  i o n  

m- 1 

i = o  
y-m - - Y-m + 1 C i t i  , m = 1,2,3,---. 

We n o t e  t h e  obvious  meaning of t h i s  t r a n s -  
fo rma t ion .  
on y-m, it i s  t r ans fo rmed  i n t o  yo = yo: 

3lht is t h e  g e n e r i c  e lement  from which t h e  p o s i t i v e  
and t h e  n e g a t i v e  e l e m e n t s  o f  R are g e n e r a t e d  by d i f f e r -  
e n t i a t i o n  and i t s  i n v e r s e  r e s p e c t i v e l y .  

A t  least  two p r o c e s s e s  f o r  t h e  soltatioa of t h e  
N-body problems are s u g g e s t e d  by t h e  a l g e b r a i c  s t r u c t u r e ,  
t h u s  f a r  developed.  We c o n s i d e r  b r i e f l y  two o f  t h e s e  
modes . 

For  i f  w e  take a sequence of m d e r i v a t i v e s  
T h i s  e l emen t ,  

i s ,  as w e  know, n o t  o n l y  t h e  i d e n t i t y  of t h e  group 

(9.1) 

(1) The s t a t e m e n t  (3 .2)  mod i f i ed ,  by t h e  u s e  
of (9.1), l e a d s  t o  t h e  form 

m- 1 

i = o  

OI 

Y- m = c (-d (m+r-qs r x + 1 C i t i  
- 

r = o  - m - r  r 

It becomes known on t h e  c o n d i t i o n  t h a t  S,m,r, f o r  any 

p o s i t i v e  i n t e g e r  m > 0 ,  i s  known. It i s  c o n j e c t u r e d  
t h a t  t h e  e v a l u a t i o n  o f  a n  i n f i n i t e  d e t e r m i n a n t  (shown 
t o  be  c o n v e r g e n t )  w i l l  l e a d  t o  known v a l u e s  o f  S-m-r. 
I f  t h e s e  v a l u e s  become known t h e n  t h e i r  s u b s t i t u t i o n  i n  

I t h e  e q u a t i o n  ( 9 . 2 )  f o r  m = 1 and m = 2 ,  namely - - 
y = 1 (-Ur s x + c o ;  

I -1 r - o  -1-r r 

+ C l t  = 1 ( -11~  ( r + l ) S  x + c 
OI 

0 

- 
- 2 - r  r r = o  

y- 2 
g i v e s  t h e  s o l u t i o n  o f  t h e  N-body problem. 

(9 .2)  

(9 .3 )  
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I f  w e  r e v e r t  t o  t h e  i n d i c e s ,  t h e n  
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by d e f i n i t i o n ,  and i s  c o n s i s t e n t  w i t h  (5.13'1.  
u t i l i z e  (5.14) and  ( 9 . 2 1 ,  t h e n  

I f  w e  

n m - 1  

i = o  
-ih X 
-m+2 j = 1  

n 
But s i n c e  1 H , C ,  i s  an  a r b i t r a r y  c o n s t a n t ,  s a y ,  C i  9 

j = 1  3 1  

t h e n  
n m- 1 

i = o  
;ih = 1 H j Y  ih + 1 C i t i  

-m+2 j = 1  

Formula (5 .14)  t r a n s f o r m s  (9.51 i n t o  

(9 .4 )  

(9 .5 )  

S p e c i f i c a l l y  for t h e  s o l u t i o n  of t h e  N-body 
problem, m = 1,2, so t h a t  

(9 .7 )  



- ih r ij ij X X (h) + C + Clt ( 9 . 8 )  
0 3 -2-r r 0 

= H.(-~I (r+l) s 
r = o  j=1 

These solutions are at the present formal. However, if 
the negative S ' s  become known, the expressions (9.71, (9.8) 
become explicitly analytical solutions of the N-body problem. 
We leave this phase of the structural application for future 
analytical considerations. 

An obsefvation of some interest is to utilize the 
symmetrical character of the S's and the X's in the form- 
ulations. A manifest generalization of (2.1) namely that 

for any integer r, specifies this symmetry. So that if 
S's and the X's are interchanged, equations (9.61, (9.7 
(9.8) become 

the 
9 

i (9.9) OD n m- 1 
ih - H.(-l)r(?m+:-l) Xij <h>Sij + 1 Cit , 

r = o  j=1 i=o -m+2 - C C 3 -m-r r 

(9.10) 

Q n 

r = o  j=1 
= 1 H.(-llr(r+l) Xi' <h)Sij + C + C.t2. (9.11) - ih 

3 -2-r r 0 1 x2 
c 

It is more likely that these expressions involving the unknown 
negative X's will turn out to be the more useful forms in 
future analytical developments. 

( 2 )  The second process in the analytical solution 
of the N-body problem and in which the evolved algebraic 
structure is utilized, involves the expansion of y,2 (and Y,~) 
by a power series in t about, say, t = 0. Then by means of the 
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group p r o p e r t i e s  of R ,  t h e  n o n - a l g e b r a i c  o p e r a t i o n s  of  
t h e  group, t h e  d i v i s i o n  theorem and i t s  c o r o l l a r y ,  t h e  
a n a l y t i c a l  and t h e  dynamical  p r o p e r t i e s  of t h e  N-body 
p h y s i c a l  sys tem my be de termined .  

Thus c o n s i d e r  t h e  more g e n e r a l  expans ion ,  
for any m ,  

m Y (0) r tr+m, m = 1,2,3,- - - 
+ L: ( r + m ) !  r=o 

(9.12) 

where t h e  f i r s t  m q u a n t i t i e s  ( y r ( t > > r , o ~  
r = - m ,  ---, - 1 are g i v e n  as i n i t i a l  c o n d i t i o n s  o f  
t h e  p h y s i c a l  system. 

L e t  r = - s ,  t h e n  (9.12) t a k e s  t h e  form 

~ ~ ( 0 ) ;  

Apply formula  (2.1) t o  (9.131, t o  g e t  

1 

(9.14) 
m 'y-,(O) m r 

1 ( m - s ) !  r = o  p = o  s=l e t=o 1 ( r + m ) !  
Y =  tm-s + c 

-m 

Formula (9.14) i s  e s s e n t i a l l y ,  e x c e p t  for con- 
s i d e r a b l e  d e t a i l e d  development ,  t h e  solution of t h e  N-body 
problem ( f o r  m = 1 and 2 ) .  Thus t h e  e x p r e s s i o n s  
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when f u l l y  e v o l v e d  w i l l  s p e c i f y  t h e  p o s i t i o n s  and v e l -  
o c i t i e s  o f  t h e  N-bodies r e l a t i v e  t o  an  i n e r t i a l  c o o r d i n a t e  
sys tem,  when t h e  i n i t i a l  boundary c o n d i t i o n s  are g iven .  
One of t h e  detai ls  i n  t h e  development of  t h e  a n a l y s i s  and 
i t s  dynamica l  i n t e r p r e t a t i o n  is t h e  d e t e r m i n a t i o n  of t h e  
r e g i o n  of convergence  f o r  t h e  ser ies  and t h e  c o n s i d e r a t i o n  
of t h e  movable s i n g u l a r i t i e s  o f  t h e  s o l u t i o n  C13.1, C14.1. 
It w i l l  be  found,  as an  example of t h e  u t i l i t a r i a n  a s p e c t  
o f  t h e  formal a l g e b r a ,  t h a t  t h e  c o r o l l a r y  t o  t h e  d i v i s i o n  
theorem p o i n t s  t o  such  e v a l u a t i o n .  
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